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Technical Note 
Flow of a micropolar fluid past a continuously moving plate 

by the presence of radiation 
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1. Introduction 

Eringen [I] first derived the constitutive equations for fluids 
with micro-structures. The boundary layer flow of such a micro- 
polar fluid past a semi-infinite plate has been studied by Ped- 
dieson and McNitt [2], whereas a similarity solution for bound- 
ary layer flow near a stagnation point was presented by Ebert 
[3]. On taking into account the gyration vector normal to the 
xy-plane and the micro-inertia effects, the boundary layer Row 
of micropolar fluids past a semi-inlinite plate was studied by 
Ahmadi [4]. Willson [5] obtained the solution in the stagnation 
region of the micropolar fluid. The flow of a micropolar fluid 
past a wedge was studied by Nath [6]. Takhar and Soundalgekar 
[7] studied the heat transfer aspect of the flow of a micropolar 
fluid past a semi-infinite plate. Recently Perdikis and Raptis 
[S] studied the heat of a micropolar fluid by the presence of 
radiation. 

In all these paper studies, the plate was assumed to be station- 
ary and the micropolar fluid moved over this plate. Another 
situation commonly observed is the flow of a micropolar station- 
ary fluid past a continuously moving plate. It is now proposed 
to study the flow of a micropolar fluid past a moving plate by 
the presence of radiation. 

2. Analysis 

We consider a steady two dimensional flow of a micropolar 
fluid past a continuously moving plate with a constant velocity. 
The origin is located at the spot through which the plate is drawn 
in the fluid medium, the x-axis is chosen along the plate and y- 
axis is taken normal to it. 

The fluid is considered to be a gray, absorbing-emitting radi- 
ation but non-scattering medium and the Rosseland approxi- 
mation is used to describe the radiative heat flux in the energy 
equation. The radiative heat flux in the .x-direction is considered 
negligible in comparison to the ,y-direction. 
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Then under the usual boundary layer approximation, the flow 
and heat transfer by the presence of radiation are governed by 
the following equations : 

(1) 

(3) 

and the boundary conditions are given by 

u = u,, Ii = 0, T= T,, o=O at j’ = 0 

u-0, T+T,, 17-o as ?‘-t XL. (5) 

Here U. 11, are the velocity components along X, y coordinates 
respectively, Y = (r~+ .S)/p is the apparent kinematic viscosity, p 
the coefficient of dynamic viscosity, S a constant characteristic of 
the fluid, p the density, c the microrotation component, K, = S/p 
(K, > 0) the coupling constant, G, ( > 0) the microrotation con- 
stant, T the temperature of the fluid, L’,, the specific heat at 
constant pressure, k the thermal conductivity, yr the radiative 
heat flux, (lo the uniform velocity oftheplate, T,, the temperature 
of the plate and T, the temperature of the fluid far away from 
the plate. 

By using Rosselant approximation we have 

4a* (‘T4 
q, = -p-3; (6) 

with u* the Stefan-Boltzmann constant and k* the mean absorp- 
tion coefficient. 

We assume that the temperature differences within the flow 
are sufficiently small such that p may be expressed as a linear 
function of temperature. This is accomplished by expanding Y 
in a Taylor series about T, and neglecting higher-order terms, 
thus 

T” 2 4T: T-3T4,. 

By using (6) and (7) equation (4) gives 

(7) 
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On introducing the following transformations 

into equations (I). (2), (3) and (8) we get 

f’“+ff”+Kg’ = 0 

G,q”-2(2,q+I”) = 0 

(3!V+4)H”+3NP/H’+3IVP~~~ = 0 

with the corresponding boundary conditions 

f(0) = 0. f’(0) = 1. H(0) = 1. g(O) = 0. 

f’(s) = 0. O(K) = 0. g(7_) = 0. 

Here 

E = -L$r (Eckert number) 
P SL I 

P = “2 (Prandtl number) 

K = : (couphng constant parameter) 

G 1 C’,, G‘=- 
I’Y 

(mlcrorotation parameter) 

,y = lc!c 
40* T; 

(radiation parameter). 

(9) 
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Fig. 1. Temperature profiles. 

are shown in Fig. I when P = 7, E = 0.02, G‘ = 2 and K = 0.1. 
We observe from this figure that an mcrease in radiation par- 
ameter leads to a decrease of the temperature. 
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